

- Mist Cannon Trucks Can Exacerbate Secondary
 Organic Aerosol Formation and PM_{2.5} Pollution
 in the Road Environment
- 4 Yu Xu¹, Xin-Ni Dong², Chen He³, Dai-She Wu⁴, Hong-Wei Xiao¹, Hua-Yun Xiao^{1,*} 5 6 ¹School of Environmental Science and Engineering, Shanghai Jiao Tong University, 7 Shanghai 200240, China 8 9 ²Jiangxi Province Science and Technology Information Institute, Nanchang 330000, 10 China ³State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 11 102249, China 12 13 ⁴School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China 14 15 16 17 *Corresponding author: Hua-Yun Xiao 18 19 E-mail: xiaohuayun@sjtu.edu.cn 20 Phone: +86-173-0183-7060 21 22
- 23
- 24

25 Abstract: Mist cannon trucks have been widely applied in megacities in China to 26 reduce the road dust. Their practical effect on controlling the formation of secondary 27 organic aerosol and fine particles remains unknown. We characterized the chemical composition variations in PM2.5 collected on the road sides with the simulated 28 29 operations of mist cannon truck and traditional sprinkling truck via Fourier transform ion cyclotron resonance mass spectrometry and ion chromatography. The mass 30 31 concentrations of water-soluble organic carbon in PM_{2.5} showed a significant increase 32 (62-70%) after air spraying. Further, we found that secondary organic aerosols, 33 particularly organic nitrates, increased significantly via the interactions of reactive gas-34 phase organics, atmospheric oxidants, and aerosol liquid water after air spraying, although the air spraying had a better effect on suppressing road dust than the ground 35 36 aspersion. Moreover, the formation of PM2.5 in the road segment where the mist cannon truck passed was promoted, with an increase of up to 13% in mass concentration after 37 25–35 minutes, on average. The application of mist cannon trucks undoubtedly worsens 38 39 the road atmospheric environment and causes health hazards to walking residents. The 40 overall results provide not only valuable insights to the formation processes of secondary organic aerosols associated with aerosol liquid water in the road environment 41 42 but also management strategies to regulate the mist cannon truck operation in China. 43

Keywords: Mist cannon truck; Water mist; Secondary organic aerosols; PM_{2.5}; Process
and mechanism

46

47 1 Introduction

48 Over the past decade, the demand for effective road dust control has grown dramatically due to the upgraded environmental protection policies and quality of life. 49 Traditionally, the sprinkling trucks with the ground aspersion work well for vehicle-50 51 generated road dust. The newly developed mist cannon trucks are able to spray water mist up to 120 meters away and 100 m high, with a droplet diameter of as small as 5 52 53 µm. They are considered to be more water-saving and efficient than the traditional 54 sprinkling truck (the ground aspersion). Thus, the mist cannon trucks have been widely 55 utilized by the local environmental bureau in recent years to achieve the target of strict emission control in megacities in China (Wang et al., 2022). Traffic-related emissions 56 contribute a huge amount of volatile organic compounds (VOCs), nitrogen oxides 57 58 (NO_x), ammonia (NH₃), and fine aerosol particles (PM_{2.5}) to the urban atmosphere, 59 which exerts adverse impacts on human health and climate change (Deng et al., 2020; Yang et al., 2022). However, no study has investigated whether and how the water mist 60 sprayed by mist cannon truck affects the road atmospheric environment in coordination 61 62 with traffic emissions.

As we know, the mist cannon trucks can spray a large amount of fine water mist in a short time. It is expected that the air humidity of local road environment where the mist cannon truck passed will increase sharply. Aerosol liquid water (ALW) exists in the condensed phase as a function of particle chemical composition, particle concentration, temperature (T), and relative humidity (RH) (Nguyen et al., 2015; Xu et al., 2020a). Typically, an increase in RH can promote the rise in ALW concentration

69	(Guo et al., 2015). ALW, as a ubiquitous and abundant medium, can not only facilitate
70	partitioning of gas-phase water-soluble organics to the condensed phase but also drive
71	the formation of secondary organic aerosol (SOA) (Carlton and Turpin, 2013; Sareen
72	et al., 2017). The severe haze episodes in Beijing can even be partly attributed to the
73	interactions between ALW (or high RH) and aerosol organic components (Li et al., 2019;
74	Wang et al., 2021). In particular, 40-80% of fossil-fuel-derived primary organic
75	aerosols were found to be water-soluble (Qiu et al., 2019). Undoubtedly, there are large
76	knowledge gaps in our current understanding on ALW-related water-soluble SOA
77	formation in the road environment with mist cannon truck operation.

Although few studies have systematically evaluated the ability of mist cannon 78 truck to remove road dust, it is easy to understand that the tiny water droplets generated 79 80 by mist cannon system can indeed capture coarse particles (i.e., dropping dust to the ground) more effectively than the water column sprayed by the traditional sprinkling 81 truck. However, fine particles (e.g., PM2.5) are a major threat to urban atmospheric 82 83 environment and human health (Yue et al., 2020). Thus, it is necessary to understand 84 the removal effect of mist cannon truck on fine particles in road environment. Assessing the impact of the mist cannon truck operation on road PM2.5 pollution is also of great 85 significance for guiding future environmental protection initiatives. 86

In this study, we simulated the operation scenes of mist cannon truck and traditional sprinkling truck on the sides of the urban road (Nanchang, eastern China) and collected ambient PM_{2.5} samples in these scenes. The molecular compositions of water-soluble organic matter (WSOM) in PM_{2.5} samples were resolved using ultrahigh-

1 ...

91	resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS).
92	We also present the measurements of the relevant chemical parameters in $PM_{2.5}$ samples
93	and the predicted ALW concentration. Furthermore, the variations of $\ensuremath{\text{PM}_{2.5}}$
94	concentrations in the road segment where the mist cannon truck passed were monitored.
95	The obtained results will clarify the impact of spraying water mist by mist cannon truck
96	on SOA formation and $PM_{2.5}$ pollution control in the urban road environment for the
97	first time.
98	

99 **2** Experimental Section

100 2.1 Study Site and Sample Collection.

101 A branch road (provincial capital north 2nd road) that was selected as study area 102 was located in the centre of Nanchang (Eastern China) (Figure S1a). This area is 103 characterized by heavy traffic and high population density. There are no typical pollution sources, such as factories and garbage treatment plants, within 30 km of the 104 105 study area. The trees on both sides of the road are very high and luxuriant (Figure S1a), 106 likely indicating that the atmosphere in this road environment is rarely disturbed by 107 strong winds and is relatively stable. The dominant species of the trees at the area is 108 camphor trees (Cinnamomum Camphora). Thus, the region is expected to be influenced by both anthropogenic (vehicle exhausts) and biogenic VOCs. 109 Two sampling points with a distance of approximately 70 m were selected, which 110

were respectively on the roadside effected by air spray and ground aspersion (Figure 111 112 S1b-e). The air spraying 8 m above the ground was to simulate the water mist sprayed by the mist cannon truck. In contrast, the ground aspersion with a height of 0.4 m above 113

114	the ground was designed to simulate the operation of traditional sprinkling truck.
115	Typically, thousands of oral fluid droplets emitted by loud speech will disappear in the
116	time range of 8 to 14 minutes in the stagnant air environment (Stadnytskyi et al., 2020).
117	It implied that the residence time of the fine water mist sprayed by the mist cannon
118	truck in the air may be longer than 8 min. As mentioned above, the luxuriant trees on
119	both sides of the road cause the atmosphere in the road environment to be relatively
120	stable with less disturbance by strong winds. Thus, the frequency of spraying water was
121	set to 1 minute spraying every 8 minutes (lower limit) in this study. The spraying was
122	controlled by an intelligent timing irrigation equipment (Nadster, China). It should be
123	noted that the diameter of the pores in the nozzle for air spraying is less than 0.8 mm,
124	while that in the nozzle for ground aspersion is approximately 6 mm.
125	Fine aerosol particles (PM _{2.5}) were collected onto the prebaked (500°C for ~10 $$
126	hours) quartz fiber filters (Pallflex, Pall Corporation, USA) using a high-volume air
127	sampler (Series 2031, Laoying, China). Sampling at the above-mentioned two sites was
128	simultaneously performed from 23 March to 26 March, 2021. The duration of each
129	aerosol sampling was approximately 4 h (9:00-13:00 LT) every day. We observed that
130	the traffic flow on March 25 was higher than that on other days. The weather of
131	sampling periods was cloudy to sunny, sunny, sunny, and shower (only one short
132	precipitation event in the sampling period), corresponding an ambient average
133	temperature (T) of approximately 21 °C. The ambient average relative humidity (RH)
133 134	temperature (T) of approximately 21 °C. The ambient average relative humidity (RH) in those periods (23–25 March) ranged between 50% and 60%. The average RH can

136	the period of 9:00-13:00 on 26 March. Thus, the water spraying operation was stopped
137	when the samples were collected on 26 March. The samples were stored at -28 °C prior
138	to the analysis. In addition, the mass concentrations of $PM_{2.5}$ were measured online
139	(Thermo Scientific 5030i, USA) from July to August 2021 near the trunk road where
140	the mist cannon truck frequently operated (Figure S1a). Specifically, $PM_{2.5}$
141	concentrations near road (81 road, Nanchang) were recorded at 5-minute intervals from
142	10 minutes before to 50 minutes after the mist cannon truck passed by.

143

144 **2.2 Chemical Analysis.**

145 A portion of each filter sample was ultrasonically extracted with Milli-Q water (MQW, 18.2 M Ω cm). WSOM in the extracting solution was further extracted using the 146 147 typical solid phase extraction (SPE) method, as indicated by previous studies (Dittmar et al., 2008; Qiao et al., 2020; Xie et al., 2020). Briefly, the cartridge (PPL, 0.5 g, Agilent) 148 was rinsed with 18 mL of methanol (LC-MS grade, Thermo Fisher) and 18 mL of HCl 149 150 solution (pH = 2) in turn. Subsequently, the extracts with acidity adjusting (pH = 2)were injected into cartridge. Acidified MQW (18 mL) and normal MQW (6 mL) were 151 152 added in turn to remove the salt and chloride ion trapped in the cartridge. After dryness 153 under a stream of N2, trapped OM was eluted using 15 mL of methanol. The eluted 154 solution was concentrated to 4 mL and then preserved at -28 °C until analysis. The molecular compositions of WSOM in PM2.5 samples were determined using a Bruker 155 156 Apex Ultra Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) 157 (Bruker, Germany) coupled to an Apollo II Electrospray ionization (ESI) (He et al.,

158	2020). The samples were injected into the ionization sources at a speed of 250 $\mu L \ h^{-1}.$
159	The instrument was operated in the negative-ion mode, with a spray shield voltage of
160	4.0 kV. The mass range was set to m/z 200–800. One hundred and twenty-eight
161	continuous scans were acquired on each analysis to heighten the signal-to-noise ratio
162	of the mass spectrum. Detailed methodologies and data quality control during the
163	analysis were illustrated elsewhere (He et al., 2019; He et al., 2020).
164	Another filter cut was ultrasonically extracted with Milli-Q water for the
165	determination of water-soluble organic carbon (WSOC), water soluble total nitrogen
166	(WSTN), and inorganic ions. The mass concentrations of WSOC and WSTN in samples
167	were measured with a total organic carbon/total nitrogen analyser (Elementar vario,
168	Germany) (Xu et al., 2019). The mass concentration of WSOC was estimated to that of
169	WSOM using a conversion factor of 1.8 (Finessi et al., 2012; Müller et al., 2017; Simon
170	et al., 2011; Yttri et al., 2007). The mass concentrations of water-soluble inorganic ions,
171	such as SO_4^{2-} , NO_3^{-} , NH_4^+ , and K^+ , were measured using an ion chromatography
172	system (Dionex, Thermo, USA) (Xu et al., 2022; Xu et al., 2020b). The mass
173	concentration of water-soluble organic nitrogen (WSON) was calculated as the
174	difference in the concentrations between WSTN and inorganic nitrogen (i.e., $\mathrm{NO_3_N}$
175	+ $NO_2^{-}N + NH_4^{+}N$ (Xu et al., 2020a). Ambient temperature and relative humidity
176	were measured using a temperature and humidity monitor (CEM 9880M, China).
177	

178 **2.3 Data Processing and Statistical Analyses.**

179 The molecular formulas assigned from FT-ICR MS were classified into four main

180	compound groups in this study. These identified groups include CHO (containing only
181	C, H, and O), CHON (containing C, H, O, and N), CHOS (containing C, H, O, and S),
182	and CHONS (containing C, H, N, O, and S) (Song et al., 2018). The double-bond
183	equivalent (DBE) was calculated to describe the unsaturation degree of organic
184	compounds (Supplementary Information) (Qiao et al., 2020; Schmidt et al., 2017).
185	The modified aromaticity index (AI_{mod}) was also calculated to reflect the aromaticity of
186	organic molecules (Supplementary Information) (Koch and Dittmar, 2006; Schmidt
187	et al., 2017). The carbon oxidation state (OSc) can be used to indicate the evolving
188	composition of aerosol organics that underwent oxidation processes (Kroll et al., 2011).
189	The calculation of OSc was detailed in the Supplementary Information. According to
190	the oxygen-to-carbon (O/C) and hydrogen-to-carbon (H/C) elemental ratios, the
191	identified molecular formulas were further classified into five compound categories,
192	including unsaturated aliphatic-like, highly unsaturated-like, highly aromatic-like,
193	polycyclic aromatic-like, and saturated-like molecules (Sihui et al., 2021). These
194	classified compound categories were visualized in the van Krevelen diagram
195	(Supplementary Information).

The thermodynamic model ISORROPIA-II was applied to calculate the mass concentrations of ALW driven by inorganic components (Guo et al., 2015; Tan et al., 2017; Xu et al., 2022). The model predicts the inorganic ALW based on particle mass concentrations of inorganic species, RH, and ambient T (**Supplementary Information**). Particle hygroscopicity is also influenced by organics in aerosol particles (Cruz and Pandis, 2000; Sareen et al., 2013). The impact of organic faction on aerosol water is

202	complex and depends on the composition of organic matter (Nguyen et al., 2016). In
203	this study, the mass concentration of water associated with aerosol organic fraction was
204	predicted according to a previously reported model with the
205	Zdanovskii-Stokes-Robinson mixing rule (Supplementary Information) (Nguyen et
206	al., 2015; Nguyen et al., 2016).
207	
208	3 Results and Discussion
209	3.1 Chemical Characteristics of PM _{2.5} in Different Road Segments.
210	Figure 1 compares the differences in the chemical composition of $PM_{2.5}$ collected
211	in the air spray road segment and ground aspersion road segment. WSOM was the
212	dominant component irrespective of the weather and road section where the samples
213	were collected, which accounted for 30–40% of the water-soluble aerosols (Figure1a-
214	c). From March 23 to March 25, the mass concentrations and fractions of WSOM
215	(/WSOC) were higher in the air spray road segment than in the ground aspersion road
216	segment. For the case without water spray treatment (as reference group), the chemical
217	composition characteristics of $PM_{2.5}$ samples collected from those two adjacent road
218	segments only showed small differences (Figure1d,h,i). Obviously, these variations in
219	the mass concentrations and fractions of WSOM can be attributed to the difference in
220	water-soluble SOA yield or formation pathway caused by different water spray
221	treatments.

The variation pattern of ALW was similar to that of WSOC during the study periods (**Figure1e-h**). Moreover, the mass concentrations of WSON also tended to

224	decrease from the air spray road segment to the ground aspersion road segment. Linear
225	regression analysis for all data showed that the mass concentrations of ALW were
226	significantly positively ($P < 0.01$) correlated with those of WSOC and WSON, with R ²
227	of 0.84 and 0.75, respectively. The results were consistent with those obtained by the
228	previous studies conducted in an agriculture area in Italy (Hodas et al., 2014) and a
229	suburban forest site in Tokyo (Xu et al., 2020a). Those studies suggested that the ALW
230	dependence of reactive gas uptake and subsequent aqueous reactions significantly
231	contributed the production of WSOC and WSON. Thus, the increase in ALW
232	concentration after air spraying can promote the formation of aqueous SOA in the road
233	environment.

Nitrate and sulfate were the most abundant inorganic components (Figure1a-d), 234 235 which have been identified as typical factors controlling ALW (Hodas et al., 2014). From the air spray road segment to the ground aspersion road segment, the decrease in 236 nitrate concentration was more significant than that in sulfate concentration (Figure1e-237 238 f). Moreover, the concentration of nitrate significantly correlated with that of ALW (P < 0.01, R² = 0.7). In contrast, the sulfate did not show a strong correlation with ALW 239 240 $(R^2 = 0.3)$. In the region with large NO_x and ammonia emissions (traffic-related) (Yang 241 et al., 2022), the formation of nitrate could be promoted by enhanced RH (24-43% of 242 increase) caused by air spraying. This is partly consistent with the thermodynamics of ammonium nitrate formation (Hodas et al., 2014; Mozurkewich, 1993). Thus, the 243 244 increase in ALW concentration after air spraying was mainly driven by RH and locally (traffic emissions) formed nitrate aerosol. It also implied that the formation of nitrate 245

- and ALW is mutually reinforcing (Chen et al., 2022).
- Interestingly, Ca²⁺ and Mg²⁺ showed a significant increase in the concentration 247 from the air spray road segment to the ground aspersion road segment (Figure1i-k), 248 which was contrary to the case of other components (e.g., WSOC, ALW and nitrate). In 249 addition, during March 26 without water spray treatment, the differences in both Ca²⁺ 250 and Mg2+ concentrations between those two adjacent road segments were almost 251 negligible (Figure1f). It is well known that Ca²⁺ and Mg²⁺ are typical crustal materials 252 253 and are mainly enriched in atmospheric coarse particles (Chen and Chen, 2008). Thus, a decrease in Ca²⁺ and Mg²⁺ concentrations after air spraying implied that the water mist 254 255 sprayed by mist cannon truck had a better effect on suppressing road dust than the ground aspersion by traditional sprinkling truck. 256
- 257

258 **3.2** General Molecular Characteristics of Water-Soluble Organic Aerosols.

Thousands of molecular formulas (5966-8102) were observed in WSOM in PM2.5 259 collected from road environment (Table 1). The CHO molecular formulas (1089-2037) 260 261 accounted for 20-25% in all molecular formulas. CHO compounds were classified by the number of oxygen atoms in their molecules, according to which the subgroups 262 ranged from O_2 to O_{15} (Figure 2). The number and intensity of dominated O_5-O_{10} 263 subgroups accounted for 72-85% and 71-86% of the total compounds, respectively; 264 265 moreover, these percentages were higher than the results reported for aerosols in Beijing (Xie et al., 2020). The average H/C and O/C ratios of CHO compounds varied from 266 1.08 to 1.24 and from 0.42 to 0.49, respectively (Table S1). The average O/C ratios 267

268	were higher than the value (0.03 ± 0.11) obtained from typical unban aerosols (Beijing,
269	China), while the H/C ratios showed relatively small differences between our results
270	and observation results in Beijing (1.14 ± 0.37) (Xie et al., 2020). These dissimilarities
271	might be attributed to the more complex sources of urban aerosols compared to aerosols
272	collected from road environment.
273	The average H/C and O/C ratios of CHON compounds ranged from 1.05 to 1.21
274	and 0.42 to 0.51, respectively (Table S1). The H/C ratio ranges of CHON compounds
275	in this study overlapped with those measured in previous studies (Sihui et al., 2021; Xie
276	et al., 2020). However, the O/C ratios of CHON compounds were relatively higher in
277	road-derived aerosols than in aerosols or snow collected in urban areas (building roof)
278	(Sihui et al., 2021; Xie et al., 2020), which implied the importance of source strength
279	(e.g., vehicle emissions) to aerosol chemical composition. The number of CHON
280	formulas (1501–2685) was much higher than that of CHO formulas (Table 1). The
281	assigned CHON formulas were further divided into CHON1 (N1O2-N1O16), CHON2
282	$(N_2O_2-N_2O_{13})$, and CHON ₃ $(N_3O_2-N_3O_{13})$ groups (Figure 2). CHON ₁ was found to be
283	the dominant nitrogen-containing species in all samples, which was consistent with
284	previous reports on urban aerosols and snow (Sihui et al., 2021; Xie et al., 2020).
285	Moreover, the CHON ₁ compounds with $O/N > 2$ contributed 99.2% – 100.0% to total
286	$CHON_1$ species in all samples. The $CHON_2$ compounds with $O/N > 2$ accounted for
287	90.2–100.0% of CHON species containing two nitrogen atoms. For CHON ₃ group, the
288	proportion of nitrogen-containing compounds with $O/N > 2$ was 53.0–61.8%. The
289	CHON species with $O/N > 2$, which allows an assignment of oxidized-form nitrogen,

290	are preferentially ionized in negative electrospray ionization mode (Lin et al., 2015;
291	Sihui et al., 2021). Studies on the compositions of organic matter in urban rainwater
292	and aerosols have suggested that numerous CHON compounds contained oxidized
293	nitrogen function groups (e.g., -ONO ₂) and that NO _x -related oxidation processes are
294	responsible for the formation of these CHON compounds (Altieri et al., 2009; Lee et
295	al., 2016). Thus, the CHON compounds with $O/N > 2$ in our $PM_{2.5}$ samples can be
296	assumed to be substantially in an oxidized form (e.g., organic nitrates).

297 Figure 2 also shows the differences in the number of CHO and CHON species 298 between the air spray road segment and ground aspersion road segment. The abundance 299 of each O_n subgroup in CHO compounds considerably enhanced after air spraying, especially the subgroups of O₅-O₁₁. In contrast, the number of CHO species for these 300 301 two cases without water spray treatment showed a considerably small difference (Figure 2d). In general, the total number of CHO compounds increased significantly 302 303 after air spraying (Table 1 and Figure 2). However, there was no significant change for 304 the total number of CHO species between the two cases without water spray treatment. 305 These findings implied that increased ALW via the air spraying can contribute substantially to the formation of CHO compounds with a more oxygenated state. 306

The number of CHON compounds decreased significantly from the air spray road segment to the ground aspersion road segment, a variation pattern of which was similar to that of CHO compounds (**Figure 2** and **Table 1**). Furthermore, the decrease in number from the air spray road segment to the ground aspersion road segment was more remarkable for CHON₁ compounds than for CHON₂ compounds. In contrast, the

312	variation in the number of CHON ₃ after air spraying was less significant than that of
313	CHON ₁₋₂ compounds. In addition, insignificant change in the number of CHON
314	compounds was found in $PM_{2.5}$ collected in the two road segments without water spray
315	(Figure 2d). As mentioned above, the potentially high abundance of organic nitrates
316	has been suggested in these road-derived aerosols. Thus, an increase in nitrogen-
317	containing compounds after air spraying indicated that the interactions among ALW,
318	traffic-derived reactive nitrogen and ambient VOCs play an important role in organic
319	nitrogen compound formation in aerosol fine particles. The current result can be partly
320	supported by that obtained by Xu et al. (2020a) in a suburban forest in Tokyo, Japan.
321	The authors suggested that ALW is a key driver for the formation of aerosol WSON
322	through secondary processes associated with atmospheric reactive nitrogen and
323	biogenic VOCs. For the sulfur-containing compounds, their molecular number just
324	showed a relatively small change after air spraying (Figure S2). It suggested that the
325	impact of ALW on sulfur-containing compound formation was weaker than that of ALW
326	on the formation of CHO and CHON compounds in this road environment.

327

328 **3.3** Newly Emerging CHO and CHON Species under the Influence of High ALW.

The molecular compositions of CHO compounds in PM_{2.5} in the van Krevelen diagram were scattered across wider ranges in the air spray road segment than in the ground aspersion road segment, particularly in the sunny days (24 and 25 March) (**Figure 3**). The result may be attributed to the increasing molecular diversity caused by ALW-related atmospheric processes. It also implied the importance of photochemical

224

CIIO

CIIO

334	reactions in CHO compound formation. Further, the unique CHO compounds were
335	identified between $PM_{2.5}$ samples in the air spray road segment (/no water spray road
336	segment (A)) and the ground aspersion road segment (/no water spray road segment (B))
337	(Figure S3). On 23 March and 24 March, the newly emerging CHO compounds after
338	air spraying were dominated by unsaturated aliphatic-like and highly unsaturated-like
339	compounds. However, both unsaturated-like species (unsaturated aliphatic-like and
340	highly unsaturated-like) and aromatic-like species (highly aromatic-like and polycyclic
341	aromatic-like) contributed significantly to the newly emerging CHO compounds after
342	air spraying on 25 March when the ALW and traffic flow were higher than other days
343	(Figure S3). Obviously, the formation of those unique CHO compounds was tightly
344	associated with increased ALW.

345 Figure 4 shows the OSc of identified unique CHO molecules. The OSc values of these CHO molecules were higher than those of primary vehicle exhausts (-2.0 to -1.9)346 (Aiken et al., 2008). The OSc values of the secondary organic aerosol formed via the 347 348 reactions of anthropogenic and biogenic VOCs (e.g., isoprene, monoterpene, toluene, alkane, and alkene) and oxidants (e.g., O3 and/or •OH) varied from -1.1 to +1.0 (Kroll 349 350 et al., 2011; Li et al., 2021), which was within the OSc value ranges of CHO molecules 351 measured in this study. In addition, hydrocarbon-like organic aerosol (HOA) likely 352 linked with primary fresh vehicle exhausts (Sun et al., 2016) only accounted for less than 6% of total unique CHO compounds (Figure 4). As mentioned previously, there 353 are dense trees on both sides of the road. Thus, these newly emerging CHO compounds 354 can be largely attributed to secondary processes associated with oxidation of vehicle 355

356	exhausts and biogenic VOCs by O3 and/or •OH. In addition, we also observed an
357	oligomerization trend (e.g., methylglyoxal (C ₃ H ₄ O ₂) to form oligomers (C ₄₋₇ H ₆₋₁₀ O ₅)
358	in particle phase) for CHO compounds after air spraying, particularly on 25 March with
359	a high ALW and a large traffic flow (Figure S4c). The overall results implied that the
360	water mist sprayed by mist cannon trucks can indeed enhance the abundance and
361	diversity of CHO compounds in fine aerosol particles via promoting gas-to-particle
362	partitioning of gas-phase oxidation products of VOCs and subsequent aqueous-phase
363	reactions.

364 For the CHON compounds, their molecular compositions were scattered across an 365 increased ranges in the van Krevelen diagram after air spraying (Figure S5). Moreover, these newly emerging CHON molecules after air spraying showed a high diversity, as 366 367 shown in Figure S6. The group of $CHON_1$ was the dominant nitrogen-containing compound in the identified unique CHON compounds. On 23 March and 24 March, the 368 mainly unique CHON compounds emerged during air spraying were unsaturated 369 370 aliphatic-like and highly unsaturated-like nitrogen-containing species. The number of 371 highly aromatic-like and polycyclic aromatic-like compounds that newly emerged also increased significantly following increased traffic flow and ALW (25 March). The 372 373 results suggested that increases in ALW after air spraying can facilitate the formation 374 of particle-phase nitrogen-containing compounds (Hallquist et al., 2009; Xu et al., 2020a). 375

Organic nitrates have been supposed to be abundant in our PM_{2.5} samples collected
 from road environment. It is well documented that atmospheric organic nitrates are

378	primary, secondary, and tertiary byproducts of anthropogenic and biogenic VOCs with
379	$O_3 \ (\text{'}{\bullet} OH)$ under the influence of NO_x or nitrate radicals (Lee et al., 2016; Sihui et al.,
380	2021; Yeh and Ziemann, 2014). In addition, numerous organic nitrates are known as
381	semivolatile compounds, with a partition between the gas and particle phases when they
382	are oxidized or photolyzed (Bean and Hildebrandt Ruiz, 2016). Recently, an oxidation
383	and hydrolysis mechanism associated with the atmospheric organic nitrates formation
384	has been proposed to interpret the potential origins or precursors of CHON compounds
385	(Sihui et al., 2021). In this study, we found that 68–82% of newly emerging \mbox{CHON}_1
386	compounds after air spraying can be explained by oxidation (e.g., R ₁ OH)-product (e.g.,
387	R_1ONO_2) pair (Figure 5a-c). It indicated that these newly emerging $CHON_1$
388	compounds were largely derived from the oxidation of CHO species under existence of
389	$\mathrm{NO}_{x}.$ A similar pattern was also observed in the newly emerging CHON_{2} compounds
390	(Figure S7). The number of unique $CHON_1$ and $CHON_2$ compounds in the two cases
391	without water spray treatment was much less than that in the cases with air spraying
392	and ground aspersion (Figure 5 and Figure S7). However, a significant oligomerization
393	trend for CHON compounds after air spraying was not observed after air spraying
394	(Figure S8). It should be pointed out that vehicle exhausts and roadside vegetation are
395	important sources for VOCs and NOx in this road environment. These results suggested
396	that increased ALW caused by air spraying can serve as an abundant medium for the
397	formation of organic nitrates via CHO compounds as potential precursors.

398

399 **3.4 Environmental Implication.**

400	Misting cannon sprayers are commonly applied in greening maintenance and
401	conventional agriculture for the distribution of fertilizers, pesticides, and herbicides. In
402	recent years, misting cannon trucks are developed and serve as an excellent option for
403	road dust control due to the production of tiny water droplets that can drop dust to the
404	ground. In particular, it is a high-performance system of spraying disinfection in the
405	road environment during the COVID-19 epidemic period. For the first time, we provide
406	a detailed characterization of chemical compositions in road-derived $PM_{2.5}$ under the
407	influence of air spraying. Recent study conducted in a rural site (China) has suggested
408	that gaseous water-soluble organic compounds mainly partitioned to the organic phase
409	under the condition of RH less than 80% (relatively low ALW) but to ALW under the
410	humid condition (RH $>$ 80%, as air spraying operation), highlighting the importance of
411	high ALW in SOA formation processes (Lv et al., 2022). Our results verified the
412	formation of numerous new CHO and CHON compounds by ALW-related promoting
413	effect (Figure 6). In particular, the mass concentrations of WSOC in $PM_{2.5}$ increased
414	by 62-70% after air spraying. Clearly, although the air spraying by mist cannon system
415	could exert a better effect on suppressing road dust than the ground aspersion, as
416	discussed previously, air pollution induced by increased SOA will be exacerbated in the
417	road environment.

To further reveal the influence of air spraying on $PM_{2.5}$ pollution on the roadside, we investigated the time series of percentage variation in $PM_{2.5}$ mass concentrations after mist cannon truck operation at a low-speed (< 30 km/h) (**Figure 7**). At 25–35 minutes after the mist cannon truck passed, the increase proportion of $PM_{2.5}$

422	concentration on the roadside gradually reached the maximum (\sim 13%, on average).
423	Subsequently, the proportion of increase in PM _{2.5} concentration gradually decreased,
424	reaching $\sim 6\%$ at 50 min after the mist cannon truck was operated. It should be noted
425	that the width of the road segment (81 road, Nanchang, China) where $PM_{2.5}$ was
426	monitored is very large (~43 m). Thus, on conventional urban roads, the water mist
427	sprayed by mist cannon truck should exert a greater promoting effect on the formation
428	of PM _{2.5} . The overall results suggested that mist cannot truck cannot effectively reduce
429	the $PM_{2.5}$ level in the road environment, but lead to aggravation of $PM_{2.5}$ pollution.
430	The chemical composition of fine aerosol particles in the urban road atmosphere
431	is highly complex, including a lot of harmful organic compounds (polycyclic aromatic
432	hydrocarbons and nitro-aromatics), as indicated by our measurements and previous
433	study (Tong et al., 2016). Emissions from vehicles and roadside greening vegetation are
434	important anthropogenic and biogenic sources of reactive gas-phase OC and key
435	precursors to form SOA in urban areas (Gentner et al., 2012; Tong et al., 2016; Xu et
436	al., 2020a). In particular, organic aerosol composition in the road environment can be
437	strongly impacted by vehicle emissions (e.g., VOCs and NO_x) (Tong et al., 2016).
438	Inhalation of the particles containing harmful organics can be responsible for a number
439	of adverse health effects (Künzli et al., 2000). However, the wide application of mist
440	cannon truck by local environmental protection department undoubtedly accelerates the
441	formation processes of SOA and $PM_{2.5}$ associated with ALW, which will further worsen
442	the urban road environment and cause health hazards to walking residents. Thus, the
443	present study provides the crucial information for the decision makers to regulate the

444 current mist cannon truck operation in many cities in China.

445

446 4 Conclusions

447 We investigated the changes in chemical compositions of PM2.5 collected from the 448 road sides of the urban road (Nanchang, eastern China) with the simulated operations of mist cannon truck and traditional sprinkling truck. Moreover, we also conducted 449 450 online measurement of PM_{2.5} concentration in the urban road segment where the mist 451 cannon truck passed by. The mass concentrations of WSOC in PM2.5 increased 452 significantly (62-70%) from the ground aspersion road segment to the air spray road 453 segment. Similarly, ALW, mainly driven by RH and locally formed nitrate aerosol, also showed a significant increase after air spraying. Moreover, we found that the mass 454 455 concentration of ALW in PM_{2.5} was significantly (P < 0.01) correlated with that of WSOC and WSON. Thus, the increase of ALW after air spraying can promote the 456 formation of particle-phase water-soluble organics in the road environment. In addition, 457 a decrease in Ca²⁺ and Mg²⁺ concentrations after air spraying suggested that the water 458 459 mist sprayed by mist cannon truck exerted a better effect on suppressing road dust than the ground aspersion by traditional sprinkling truck. 460

A comparison in the number of CHO and CHON species between the air spray road segment and ground aspersion road segment suggested that the increase of ALW after air spraying can enhance the abundance and diversity of CHO and CHON compounds in fine aerosol particles. The newly emerging CHO compounds after air spraying can be largely attributed to secondary processes associated with oxidation of

466	vehicle exhausts and biogenic VOCs by oxidants and oligomerization. Organic nitrates
467	were considered to be the abundant nitrogen-containing compounds in the $PM_{2.5}$
468	samples. Furthermore, we found that the newly emerging organic nitrates were largely
469	derived from the oxidation of CHO species under existence of NO _x .
470	At 25–35 minutes after the mist cannon truck passed, $PM_{2.5}$ concentration on the
471	roadside increased by up to 13%, on average. The proportion of increase in $PM_{2.5}$
472	concentration gradually decreased to $\sim 6\%$ at 50 min after the mist cannon truck was
473	operated. The overall results suggested that although mist cannon truck could exert a
474	better effect on suppressing road dust than the traditional sprinkling truck, air pollution
475	induced by increased SOA and $PM_{2.5}$ level will be exacerbated in the urban road
476	environment. Our findings provide new insights into the formation processes of SOA
477	associated with the water mist sprayed by mist cannon truck in the road atmospheric
478	environment.

479

480 **Data Availability**

481 The zenodo data presented in this paper can be accessed at 482 (DOI:10.5281/zenodo.7113675).

483

484 **Supporting Information**

Additional 1 table and 8 figures and details about parameter calculation, compound 485 categorization, and ALW prediction. 486

487

22

488 Author contributions

- 489 Conceptualization: Yu Xu, Hua-Yun Xiao, Dai-She Wu
- 490 Methodology: Yu Xu, Xin-Ni Dong, Chen He
- 491 Investigation: Xin-Ni Dong, Hong-Wei Xiao
- 492 Writing—original draft: Yu Xu
- 493 Writing—review & editing: Yu Xu
- 494

495 Competing interests

- 496 The authors declare no competing financial interest.
- 497

498 Acknowledgements

499 This study was kindly supported by Shanghai "Science and Technology Innovation

500 Action Plan" Shanghai Sailing Program through grant 22YF1418700 (Y. Xu) and the

- 501 Natural (Youth) Science Foundation of Jiangxi, China through grant 20212BAB213039
- 502 (Y. Xu).
- 503

504 References

- 505 Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K.
- 506 S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q.,
- 507 Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B.,
- 508 Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A.,
- 509 Baltensperger, U., Jimenez, J. L.: O/C and OM/OC Ratios of Primary,

510	Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-
511	Flight Aerosol Mass Spectrometry, Environ. Sci. Technol., 42(12): 4478-4485,
512	2008.
513	Altieri, K. E., Turpin, B. J., Seitzinger, S. P.: Oligomers, organosulfates, and nitrooxy
514	organosulfates in rainwater identified by ultra-high resolution electrospray
515	ionization FT-ICR mass spectrometry, Atmos. Chem. Phys., 9(7): 2533-2542,
516	2009.
517	Bean, J. K., Hildebrandt Ruiz, L.: Gas-particle partitioning and hydrolysis of organic
518	nitrates formed from the oxidation of α -pinene in environmental chamber
519	experiments, Atmos. Chem. Phys., 16(4): 2175-2184, 2016.
520	Carlton, A., Turpin, B.: Particle partitioning potential of organic compounds is highest
521	in the Eastern US and driven by anthropogenic water, Atmos. Chem. Phys.,
522	13(20): 10203-10214, 2013.
523	Chen, H. Y., Chen, L. D.: Importance of anthropogenic inputs and continental-derived
524	dust for the distribution and flux of water-soluble nitrogen and phosphorus
525	species in aerosol within the atmosphere over the East China Sea, J. Geophys.
526	Res.: Atmos., 113: D11. DOI: 10.1029/2007JD009491., 2008.
527	Chen, Y., Wang, Y., Nenes, A., Wild, O., Song, S., Hu, D., Liu, D., He, J., Hildebrandt
528	Ruiz, L., Apte, J. S., Gunthe, S. S., Liu, P.: Ammonium Chloride Associated
529	Aerosol Liquid Water Enhances Haze in Delhi, India, Environ. Sci. Technol.,
530	2022.

531 Cruz, C. N., Pandis, S. N.: Deliquescence and hygroscopic growth of mixed inorganic-

532	organic atmospheric aerosol, Environ. Sci. Technol., 34(20): 4313-4319, 2000.
533	Deng, F., Lv, Z., Qi, L., Wang, X., Shi, M., Liu, H.: A big data approach to improving
534	the vehicle emission inventory in China, Nat. Commun., 11(1): 2801, 2020.
535	Dittmar, T., Koch, B., Hertkorn, N., Kattner, G.: A simple and efficient method for the
536	solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater,
537	Limnol. Oceanogr.: Meth., 6(6): 230–235, 2008.
538	Finessi, E., Decesari, S., Paglione, M., Giulianelli, L., Carbone, C., Gilardoni, S., Fuzzi,
539	S., Saarikoski, S., Raatikainen, T., Hillamo, R.: Determination of the biogenic
540	secondary organic aerosol fraction in the boreal forest by NMR spectroscopy,
541	Atmos. Chem. Phys., 12(2): 941-959, 2012.
542	Gentner, D. R., Isaacman, G., Worton, D. R., Chan, A. W. H., Dallmann, T. R., Davis,
543	L., Liu, S., Day, D. A., Russell, L. M., Wilson, K. R., Weber, R., Guha, A.,
544	Harley, R. A., Goldstein, A. H.: Elucidating secondary organic aerosol from
545	diesel and gasoline vehicles through detailed characterization of organic carbon
546	emissions, P. Natl. Acad. Sci. U. S. A., 109(45): 18318-18323, 2012.
547	Guo, H. Y., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite Jr, J., Carlton, A.,
548	Lee, S. H., Bergin, M., Ng, N.: Fine-particle water and pH in the southeastern
549	United States, Atmos. Chem. Phys., 15(9): 5211-5228, 2015.
550	Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M.,
551	Dommen, J., Donahue, N., George, C., Goldstein, A.: The formation, properties
552	and impact of secondary organic aerosol: current and emerging issues, Atmos.
553	Chem. Phys., 9(14): 5155-5236, 2009.

- He, C., Pan, Q., Li, P., Xie, W., He, D., Zhang, C., Shi, Q.: Molecular composition and
- spatial distribution of dissolved organic matter (DOM) in the Pearl River
 Estuary, China, Environ. Chem., 17, 2019.
- 557 He, C., Zhang, Y., Li, Y., Zhuo, X., Li, Y., Zhang, C., Shi, Q.: In-House Standard
- 558 Method for Molecular Characterization of Dissolved Organic Matter by FT-ICR
- 559 Mass Spectrometry, ACS Omega, 5(20): 11730-11736, 2020.
- 560 Hodas, N., Sullivan, A. P., Skog, K., Keutsch, F. N., Collett Jr, J. L., Decesari, S.,
- 561 Facchini, M. C., Carlton, A. G., Laaksonen, A., Turpin, B. J.: Aerosol liquid
- 562 water driven by anthropogenic nitrate: Implications for lifetimes of water-
- soluble organic gases and potential for secondary organic aerosol formation,
- 564 Environ. Sci. Technol., 48(19): 11127-11136, 2014.
- 565 Koch, B. P., Dittmar, T.: From mass to structure: an aromaticity index for high-
- resolution mass data of natural organic matter, Rapid Commun. Mass Spectrom.,
 20(5): 926-932, 2006.
- 568 Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson,
- 569 K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R.,
- Smith, J. D., Kolb, C. E., Worsnop, D. R.: Carbon oxidation state as a metric for
 describing the chemistry of atmospheric organic aerosol, Nat. Chem., 3(2): 133139, 2011.
- 573 Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., Herry, M.,
- 574 Horak, F., Jr., Puybonnieux-Texier, V., Quénel, P., Schneider, J., Seethaler, R.,
- 575 Vergnaud, J. C., Sommer, H.: Public-health impact of outdoor and traffic-related

576	air pollution: a European assessment, Lancet, 356(9232): 795-801, 2000.
577	Lee, B. H., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Hallquist, M., Lee, L., Romer, P.,
578	Cohen, R. C., Iyer, S., Kurtén, T., Hu, W., Day, D. A., Campuzano-Jost, P.,
579	Jimenez, J. L., Xu, L., Ng, N. L., Guo, H., Weber, R. J., Wild, R. J., Brown, S.
580	S., Koss, A., Gouw, J. d., Olson, K., Goldstein, A. H., Seco, R., Kim, S., McAvey,
581	K., Shepson, P. B., Starn, T., Baumann, K., Edgerton, E. S., Liu, J., Shilling, J.
582	E., Miller, D. O., Brune, W., Schobesberger, S., D'Ambro, E. L., Thornton, J. A.:
583	Highly functionalized organic nitrates in the southeast United States:
584	Contribution to secondary organic aerosol and reactive nitrogen budgets, P. Natl.
585	Acad. Sci. U. S. A., 113(6): 1516-1521, 2016.
586	Li, X., Song, S., Zhou, W., Hao, J., Worsnop, D., Jiang, J.: Interactions between aerosol
587	organic components and liquid water content during haze episodes in Beijing,
588	Atmos. Chem. Phys., 19: 12163-12174, 2019.
589	Li, Y., Zhao, J., Wang, Y., Seinfeld, J. H., Zhang, R.: Multigeneration Production of
590	Secondary Organic Aerosol from Toluene Photooxidation, Environ. Sci.
591	Technol., 55(13): 8592-8603, 2021.
592	Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., Laskin, A.: Molecular
593	characterization of brown carbon (BrC) chromophores in secondary organic
594	aerosol generated from photo-oxidation of toluene, Phys. Chem. Chem. Phys.,
595	17(36): 23312-23325, 2015.
596	Lv, S., Wang, F., Wu, C., Chen, Y., Liu, S., Zhang, S., Li, D., Du, W., Zhang, F., Wang,

597 H., Huang, C., Fu, Q., Duan, Y., Wang, G.: Gas-to-Aerosol Phase Partitioning

598	of Atmospheric Water-Soluble Organic Compounds at a Rural Site in China: An
599	Enhancing Effect of NH3 on SOA Formation, Environ. Sci. Technol., 56(7):
600	3915-3924, 2022.
601	Mozurkewich, M.: The dissociation constant of ammonium nitrate and its dependence
602	on temperature, relative humidity and particle size, Atmos. Environ., 27(2): 261-
603	270, 1993.
604	Müller, A., Miyazaki, Y., Tachibana, E., Kawamura, K., Hiura, T.: Evidence of a
605	reduction in cloud condensation nuclei activity of water-soluble aerosols caused
606	by biogenic emissions in a cool-temperate forest, Sci. Rep., 7(1): 8452. DOI:
607	10.1038/s41598-017-08112-9., 2017.
608	Nguyen, T. K. V., Capps, S. L., Carlton, A. G.: Decreasing Aerosol Water Is Consistent
609	with OC Trends in the Southeast U.S, Environ. Sci. Technol., 49(13): 7843-7850,
610	2015.
611	Nguyen, T. K. V., Zhang, Q., Jimenez, J. L., Pike, M., Carlton, A. G.: Liquid water:
612	ubiquitous contributor to aerosol mass, Environ. Sci. Tech. Let., 3(7): 257-263,
613	2016.
614	Qiao, W., Guo, H., He, C., Shi, Q., Xiu, W., Zhao, B.: Molecular Evidence of Arsenic
615	Mobility Linked to Biodegradable Organic Matter, Environ. Sci. Technol.,
616	54(12): 7280-7290, 2020.
617	Qiu, Y., Xie, Q., Wang, J., Xu, W., Li, L., Wang, Q., Zhao, J., Chen, Y., Chen, Y., Wu,
618	Y., Du, W., Zhou, W., Lee, J., Zhao, C., Ge, X., Fu, P., Wang, Z., Worsnop, D.

619 R., Sun, Y.: Vertical Characterization and Source Apportionment of Water-

620	Soluble Organic Aerosol with High-resolution Aerosol Mass Spectrometry in

- 621 Beijing, China, ACS Earth Space Chem., 3(2): 273-284, 2019.
- 622 Sareen, N., Schwier, A., Lathem, T., Nenes, A., McNeill, V. F.: Surfactants from the gas
- phase may promote cloud droplet formation, P. Natl. Acad. Sci. U. S. A., 110:
 2723-2728, 2013.
- Sareen, N., Waxman, E. M., Turpin, B. J., Volkamer, R., Carlton, A. G.: Potential of
 aerosol liquid water to facilitate organic aerosol formation: assessing knowledge
 gaps about precursors and partitioning, Environ. Sci. Technol., 51(6): 3327-
- *628 3335, 2017.*
- Schmidt, F., Koch, B. P., Goldhammer, T., Elvert, M., Witt, M., Lin, Y.-S., Wendt, J.,
 Zabel, M., Heuer, V. B., Hinrichs, K.-U.: Unraveling signatures of
 biogeochemical processes and the depositional setting in the molecular
 composition of pore water DOM across different marine environments,
 Geochim. Cosmochim. Ac., 207: 57-80, 2017.
- 634 Sihui, S., Xie, Q., Lang, Y., Cao, D., Xu, Y., Chen, J., Chen, S., Hu, W., Qi, Y., Pan, X.,
- 635 Sun, Y., Wang, Z., Liu, C.-Q., Jiang, G., Fu, P.: High Molecular Diversity of
- 636 Organic Nitrogen in Urban Snow in North China, Environ. Sci. Technol., 2021.
- 637 Simon, H., Bhave, P., Swall, J., Frank, N., Malm, W.: Determining the spatial and
- 638 seasonal variability in OM/OC ratios across the US using multiple regression,
- 639 Atmos. Chem. Phys., 11(6): 2933-2949, 2011.
- 640 Song, J., Li, M., Jiang, B., Wei, S., Fan, X., Peng, P. a.: Molecular Characterization of
- 641 Water-Soluble Humic like Substances in Smoke Particles Emitted from

642	Combustion of Biomass Materials and Coal Using Ultrahigh-Resolution
643	Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass
644	Spectrometry, Environ. Sci. Technol., 52(5): 2575-2585, 2018.
645	Stadnytskyi, V., Bax, C. E., Bax, A., Anfinrud, P.: The airborne lifetime of small speech
646	droplets and their potential importance in SARS-CoV-2 transmission, P. Natl.
647	Acad. Sci. U. S. A., 117(22): 11875-11877, 2020.
648	Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., ge, X., Zhang, q., Zhu, C., Ren, L., Xu, W.,
649	Zhao, J., Han, T., Worsnop, D., Wang, Z.: Primary and secondary aerosols in
650	Beijing in winter: Sources, variations and processes, Atmos. Chem. Phys., 16:
651	8309-8329, 2016.
652	Tan, H., Cai, M., Fan, Q., Liu, L., Li, F., Chan, P. W., Deng, X., Wu, D.: An analysis of
653	aerosol liquid water content and related impact factors in Pearl River Delta, Sci.
654	Total Environ., 579: 1822-1830, 2017.
655	Tong, H., Kourtchev, I., Pant, P., Keyte, I., O'Connor, I. P., Wenger, J., Pope, F., Harrison,
656	R., Kalberer, M.: Molecular composition of organic aerosols at urban
657	background and road tunnel sites using ultra-high resolution mass spectrometry,
658	Faraday Discuss., 189: 51-68, 2016.
659	Wang, J., Gui, H., Yang, Z., Yu, T., Zhang, X., Liu, J.: Real-world gaseous emission
660	characteristics of natural gas heavy-duty sanitation trucks, J. Environ. Sci., 115:
661	319-329, 2022.
662	Wang, J., Ye, J., Zhang, Q., Zhao, J., Wu, Y., Li, J., Liu, D., Li, W., Zhang, Y., Wu, C.,

663 Xie, C., Qin, Y., Lei, Y., Huang, X., Guo, J., Liu, P., Fu, P., Li, Y., Lee, H. C.,

664	Choi, H., Zhang, J., Liao, H., Chen, M., Sun, Y., Ge, X., Martin, S. T., Jacob, D.
665	J.: Aqueous production of secondary organic aerosol from fossil-fuel emissions
666	in winter Beijing haze, Proceedings of the National Academy of Sciences,
667	118(8): e2022179118, 2021.
668	Xie, Q., Sihui, S., Chen, S., Xu, Y., Cao, D., Chen, J., Ren, L., Yue, S., Zhao, W., Sun,
669	Y., Wang, Z., Tong, H., Su, H., Cheng, Y., Kawamura, K., Jiang, G., Liu, CQ.,
670	Fu, P.: Molecular characterization of firework-related urban aerosols using
671	Fourier transform ion cyclotron resonance mass spectrometry, Atmos. Chem.
672	Phys., 20: 6803-6820, 2020.
673	Xu, Y., Dong, XN., Xiao, HY., Zhou, JX., Wu, DS.: Proteinaceous Matter and
674	Liquid Water in Fine Aerosols in Nanchang, Eastern China: Seasonal Variations,
675	Sources, and Potential Connections, J. Geophys. Res.: Atmos., 127(15):
676	e2022JD036589, 2022.
677	Xu, Y., Miyazaki, Y., Tachibana, E., Sato, K., Ramasamy, S., Mochizuki, T., Sadanaga,
678	Y., Nakashima, Y., Sakamoto, Y., Matsuda, K., Kajii, Y.: Aerosol Liquid Water
679	Promotes the Formation of Water-Soluble Organic Nitrogen in Submicrometer
680	Aerosols in a Suburban Forest, Environ. Sci. Technol., 54(3): 1406-1414, 2020a.
681	Xu, Y., Wu, D. S., Xiao, H. Y., Zhou, J. X.: Dissolved hydrolyzed amino acids in
682	precipitation in suburban Guiyang, southwestern China: Seasonal variations and
683	potential atmospheric processes, Atmos. Environ., 211: 247-255, 2019.
684	Xu, Y., Xiao, H., Wu, D., Long, C.: Abiotic and Biological Degradation of Atmospheric
685	Proteinaceous Matter Can Contribute Significantly to Dissolved Amino Acids

31

686	in Wet Deposition, Environ. Sci. Technol., 54(11): 6551-6561, 2020b.
687	Yang, D., Zhu, S., Ma, Y., Zhou, L., Zheng, F., Wang, L., Jiang, J., Zheng, J.: Emissions
688	of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from
689	Motor Vehicles under Low-Speed Driving Conditions, Environ. Sci. Technol.,
690	56(9): 5440-5447, 2022.
691	Yeh, G. K., Ziemann, P. J.: Alkyl Nitrate Formation from the Reactions of C8-C14 n-
692	Alkanes with OH Radicals in the Presence of NOx: Measured Yields with
693	Essential Corrections for Gas-Wall Partitioning, J. Phys. Chem. A, 118(37):
694	8147-8157, 2014.
695	Yttri, K. E., Aas, W., Bjerke, A., Cape, J., Cavalli, F., Ceburnis, D., Dye, C., Emblico,
696	L., Facchini, M., Forster, C.: Elemental and organic carbon in PM10: a one year
697	measurement campaign within the European Monitoring and Evaluation
698	Programme EMEP, Atmos. Chem. Phys., 7(22): 5711-5725, 2007.
699	Yue, H., He, C., Huang, Q., Yin, D., Bryan, B. A.: Stronger policy required to
700	substantially reduce deaths from PM2.5 pollution in China, Nat. Commun.,
701	11(1): 1462, 2020.
702	

Table 1. The number of compounds in different subgroups in different samples and the number fractions of common molecules in the same subgroup in different samples.

Sample type	Total	CHO	Common	Common	CHON	Common	Common
(Date: Mar. 23-26)			(CHO)	fraction		(CHON)	fraction
				(CHO)			(CHON)
Air spray (23) 7069 1766		1104	63%	2375	1209	55%	
Ground aspersion (23)	6166	1233	1104	90%	1803	1308	73%
Air spray (24)	7317	1861	000	53%	2447	1225	50%
Ground aspersion (24)	6067	1098	990	90%	1501	1223	82%
Air spray (25)	8102	2037	204	39%	2685	1200	45%
Ground aspersion (25)	5966	845	804	95%	1464	1209	83%
No water spray (A) (26) 6998 1621		1215	81%	2120	1570	74%	
No water spray (B) (26)	6990	1539	1313	85%	1963	13/9	80%

Figures 1-7

1 2

6 Figure 1. The mass fractions of the chemical components in PM_{2.5}: (a, b, and c) air 7 spray road segment vs ground aspersion road segment and (d) no water spray road 8 segment (A) vs no water spray road segment (B). The mass concentrations of nitrate, 9 ammonium, and the sum of calcium and magnesium in PM2.5: (e, f, and g) air spray 10 road segment vs ground aspersion road segment and (h) no water spray road segment 11 (A) vs no water spray road segment (B). The mass concentrations of ALW, WSOC, and 12 WSOM in PM2.5: (i, j, and k) air spray road segment vs ground aspersion road segment and (1) no water spray road segment (A) vs no water spray road segment (B). 13

14

15

Figure 2.

16

24

Figure 3. Van Krevelen diagrams of CHO compounds in WSOM in PM2.5 collected 27 28 from different cases: air spray road segment vs ground aspersion road segment on (a) March 23, (b) March 24, and (c) March 25 and two road segments without water spray 29 30 (A vs B) on (d) March 26. The circles of different colors indicate the unique organic compounds identified in the above cases of paired comparison. Common molecules 31 32 identified in different cases are shown as gray circles. The classifications of compounds 33 include (A) unsaturated aliphatic-like, (B) highly unsaturated-like, (C) highly aromatic-34 like, (D) polycyclic aromatic-like, and (E) saturated-like molecules.

- 35
- 36

Figure 4. OSc of unique CHO molecules in WSOM in PM2.5 collected from different 40 cases: air spray road segment vs ground aspersion road segment on (a) March 23, (b) 41 March 24, and (c) March 25 and two road segments without water spray (A vs B) on (d) 42 43 March 26. For the above cases of paired comparison, the unique CHO compounds indicate the CHO molecules identified in PM2.5 collected from the air spray (/no water 44 45 spray-A) road segments. The light orange background represents areas of HOA (hydrocarbon-like organic aerosol), BBOA and VEOA (biomass burning and vehicle 46 emission organic aerosols) (Kroll et al., 2011; Tong et al., 2016), SV-OOA (semivolatile 47 oxidized organic aerosol), and LV-OOA (low-volatility oxidized organic aerosol) (Kroll 48 49 et al., 2011). 50

Figure 5. OSc of unique CHON1 molecules in WSOM in PM2.5 collected from different 54 55 cases: air spray road segment vs ground aspersion road segment on (a) March 23, (b) March 24, and (c) March 25 and two road segments without water spray (A vs B) on (d) 56 57 March 26. For the above cases of paired comparison, the unique CHON1 compounds indicate the CHON1 molecules identified in PM2.5 collected from the air spray (/no 58 59 water spray-A) road segments. The light orange background represents areas of HOA, 60 BBOA and VEOA, SV-OOA, and LV-OOA. The grey circles refer to the identified oxidation-product pairs. 61

- 62
- 63
- 64
- 65

- 66 **Figure 6.**
- 67

- 68
- 69 Figure 6. Conceptual picture showing the influence of (a) mist cannon truck and (b)
- 70 traditional sprinkling truck on SOA formation in the urban road environment.
- 71
- 72

76 Figure 7. The time series of percentage variations in PM_{2.5} mass concentrations after

77 mist cannon truck operation. Each box encompasses the 25th-75th percentiles.

78 Whiskers are the 5th and 95th percentiles. The solid lines and squares inside boxes

79 indicate the median and mean. All individual data are also presented as circles.

80